Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.156
Filtrar
1.
PLoS Pathog ; 20(4): e1011829, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38620036

RESUMEN

Viruses target mitochondria to promote their replication, and infection-induced stress during the progression of infection leads to the regulation of antiviral defenses and mitochondrial metabolism which are opposed by counteracting viral factors. The precise structural and functional changes that underlie how mitochondria react to the infection remain largely unclear. Here we show extensive transcriptional remodeling of protein-encoding host genes involved in the respiratory chain, apoptosis, and structural organization of mitochondria as herpes simplex virus type 1 lytic infection proceeds from early to late stages of infection. High-resolution microscopy and interaction analyses unveiled infection-induced emergence of rough, thin, and elongated mitochondria relocalized to the perinuclear area, a significant increase in the number and clustering of endoplasmic reticulum-mitochondria contact sites, and thickening and shortening of mitochondrial cristae. Finally, metabolic analyses demonstrated that reactivation of ATP production is accompanied by increased mitochondrial Ca2+ content and proton leakage as the infection proceeds. Overall, the significant structural and functional changes in the mitochondria triggered by the viral invasion are tightly connected to the progression of the virus infection.


Asunto(s)
Herpes Simple , Herpesvirus Humano 1 , Mitocondrias , Mitocondrias/metabolismo , Herpesvirus Humano 1/fisiología , Herpesvirus Humano 1/metabolismo , Humanos , Herpes Simple/metabolismo , Herpes Simple/virología , Herpes Simple/patología , Animales , Infecciones por Herpesviridae/metabolismo , Infecciones por Herpesviridae/virología , Infecciones por Herpesviridae/patología , Progresión de la Enfermedad , Chlorocebus aethiops
2.
Alzheimers Res Ther ; 16(1): 68, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570885

RESUMEN

BACKGROUND: Mounting data suggests that herpes simplex virus type 1 (HSV-1) is involved in the pathogenesis of AD, possibly instigating amyloid-beta (Aß) accumulation decades before the onset of clinical symptoms. However, human in vivo evidence linking HSV-1 infection to AD pathology is lacking in normal aging, which may contribute to the elucidation of the role of HSV-1 infection as a potential AD risk factor. METHODS: To shed light into this question, serum anti-HSV IgG levels were correlated with 18F-Florbetaben-PET binding to Aß deposits and blood markers of neurodegeneration (pTau181 and neurofilament light chain) in cognitively normal older adults. Additionally, we investigated whether associations between anti-HSV IgG and AD markers were more evident in APOE4 carriers. RESULTS: We showed that increased anti-HSV IgG levels are associated with higher Aß load in fronto-temporal regions of cognitively normal older adults. Remarkably, these cortical regions exhibited abnormal patterns of resting state-functional connectivity (rs-FC) only in those individuals showing the highest levels of anti-HSV IgG. We further found that positive relationships between anti-HSV IgG levels and Aß load, particularly in the anterior cingulate cortex, are moderated by the APOE4 genotype, the strongest genetic risk factor for AD. Importantly, anti-HSV IgG levels were unrelated to either subclinical cognitive deficits or to blood markers of neurodegeneration. CONCLUSIONS: All together, these results suggest that HSV infection is selectively related to cortical Aß deposition in normal aging, supporting the inclusion of cognitively normal older adults in prospective trials of antimicrobial therapy aimed at decreasing the AD risk in the aging population.


Asunto(s)
Enfermedad de Alzheimer , Herpes Simple , Herpesvirus Humano 1 , Humanos , Anciano , Apolipoproteína E4 , Estudios Prospectivos , Péptidos beta-Amiloides/metabolismo , Herpesvirus Humano 1/metabolismo , Herpes Simple/diagnóstico por imagen , Herpes Simple/metabolismo , Envejecimiento/metabolismo , Inmunoglobulina G , Enfermedad de Alzheimer/diagnóstico
3.
Front Immunol ; 15: 1332588, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38524121

RESUMEN

Naïve CD8+ T cells need to undergo a complex and coordinated differentiation program to gain the capacity to control virus infections. This not only involves the acquisition of effector functions, but also regulates the development of a subset of effector CD8+ T cells into long-lived and protective memory cells. Microbiota-derived metabolites have recently gained interest for their influence on T cells, but much remains unclear about their role in CD8+ T cell differentiation. In this study, we investigated the role of the G protein-coupled receptors (GPR)41 and GPR43 that can bind microbiota-derived short chain fatty acids (SCFAs) in CD8+ T cell priming following epicutaneous herpes simplex virus type 1 (HSV-1) infection. We found that HSV-specific CD8+ T cells in GPR41/43-deficient mice were impaired in the antigen-elicited production of interferon-gamma (IFN-γ), tumour necrosis factor-alpha (TNF-α), granzyme B and perforin, and failed to differentiate effectively into memory precursors. The defect in controlling HSV-1 at the site of infection could be restored when GPR41 and GPR43 were expressed exclusively by HSV-specific CD8+ T cells. Our findings therefore highlight roles for GPR41 and GPR43 in CD8+ T cell differentiation, emphasising the importance of metabolite sensing in fine-tuning anti-viral CD8+ T cell priming.


Asunto(s)
Herpes Simple , Herpesvirus Humano 1 , Animales , Ratones , Herpesvirus Humano 1/metabolismo , Linfocitos T CD8-positivos/metabolismo , Herpes Simple/metabolismo , Ácidos Grasos Volátiles/metabolismo , Interferón gamma/metabolismo
4.
Virology ; 594: 110035, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38554655

RESUMEN

The herpes simplex virus 1 DNA polymerase contains a highly conserved structural motif found in most family B polymerases and certain RNA-binding proteins. To investigate its importance within cells, we constructed a mutant virus with substitutions in two residues of the motif and a rescued derivative. The substitutions resulted in severe impairment of plaque formation, yields of infectious virus, and viral DNA synthesis while not meaningfully affecting expression of the mutant enzyme, its co-localization with the viral single-stranded DNA binding protein at intranuclear punctate sites in non-complementing cells or in replication compartments in complementing cells, or viral DNA polymerase activity. Taken together, our results indicate that the RNA binding motif plays a crucial role in herpes simplex virus 1 DNA synthesis through a mechanism separate from effects on polymerase activity, thus identifying a distinct essential function of this motif with implications for hypotheses regarding its biochemical functions.


Asunto(s)
Herpesvirus Humano 1 , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/metabolismo , ADN Viral/genética , ADN Polimerasa I/genética , ADN Polimerasa I/metabolismo , Replicación Viral , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , Replicación del ADN
5.
Front Biosci (Landmark Ed) ; 29(3): 102, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38538263

RESUMEN

Herpes simplex virus 1 (HSV-1) or simplexvirus humanalpha 1 is a neurotropic virus that is responsible for orofacial infections in humans. More than 70% of the world's population may have seropositivity for HSV-1, and this virus is a leading cause of sporadic lethal encephalitis in humans. The role of toll-like receptors (TLRs) in defending against HSV-1 infection has been explored, including the consequences of lacking these receptors or other proteins in the TLR pathway. Cell and mouse models have been used to study the importance of these receptors in combating HSV-1, how they relate to the innate immune response, and how they participate in the orchestration of the adaptive immune response. Myeloid differentiation factor 88 (MyD88) is a protein involved in the downstream activation of TLRs and plays a crucial role in this signaling. Mice with functional MyD88 or TLR2 and TLR9 can survive HSV-1 infection. However, they can develop encephalitis and face a 100% mortality rate in a dose-dependent manner when MyD88 or TLR2 plus TLR9 proteins are non-functional. In TLR2/9 knockout mice, an increase in chemokines and decreases in nitric oxide (NO), interferon (IFN) gamma, and interleukin 1 (IL-1) levels in the trigeminal ganglia (TG) have been correlated with mortality.


Asunto(s)
Encefalitis , Herpes Simple , Herpesvirus Humano 1 , Humanos , Animales , Ratones , Herpesvirus Humano 1/metabolismo , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Ganglio del Trigémino/metabolismo , Receptores Toll-Like/metabolismo , Ratones Noqueados , Ratones Endogámicos C57BL
6.
Cell Commun Signal ; 22(1): 157, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429625

RESUMEN

BACKGROUND: O-GlcNAcylation modification affects multiple physiological and pathophysiolocal functions of cells. Altered O-GlcNAcylation was reported to participate in antivirus response. Stimulator of interferon genes (STING) is an adaptor mediating DNA virus-induced innate immune response. Whether STING is able to be modified by O-GlcNAcylation and how O-GlcNAcylation affects STING-mediated anti-DNA virus response remain unknown. METHODS: Metabolomics analysis was used for detecting metabolic alterations in HSV-1 infection cells. Succinylated wheat germ agglutinin (sWGA), co-immunoprecipitation, and pull-down assay were employed for determining O-GlcNAcylation. Mutagenesis PCR was applied for the generation of STING mutants. WT and Sting1-/- C57BL/6 mice (KOCMP-72512-Sting1-B6NVA) were infected with HSV-1 and treated with O-GlcNAcylation inhibitor for validating the role of STING O-GlcNAcylation in antiviral response. RESULTS: STING was functionally activated by O-GlcNAcylation in host cells challenged with HSV-1. We demonstrated that this signaling event was initiated by virus infection-enhanced hexosamine biosynthesis pathway (HBP). HSV-1 (or viral DNA mimics) promotes glucose metabolism of host cells with a marked increase in HBP, which provides donor glucosamine for O-GlcNAcylation. STING was O-GlcNAcylated on threonine 229, which led to lysine 63-linked ubiquitination of STING and activation of antiviral immune responses. Mutation of STING T229 to alanine abrogated STING activation and reduced HSV-1 stimulated production of interferon (IFN). Application of 6-diazo-5-oxonorleucine (DON), an agent that blocks the production of UDP-GlcNAc and inhibits O-GlcNAcylation, markedly attenuated the removal of HSV-1 in wild type C57BL/6 mice, leading to an increased viral retention, elevated infiltration of inflammatory cells, and worsened tissue damages to those displayed in STING gene knockout mice. Together, our data suggest that STING is O-GlcNAcylated in HSV-1, which is crucial for an effective antiviral innate immune response. CONCLUSION: HSV-1 infection activates the generation of UDP-Glc-NAc by upregulating the HBP metabolism. Elevated UDP-Glc-NAc promotes the O-GlcNAcylation of STING, which mediates the anti-viral function of STING. Targeting O-GlcNAcylation of STING could be a useful strategy for antiviral innate immunity.


Asunto(s)
Herpesvirus Humano 1 , Proteínas de la Membrana , Animales , Ratones , Herpesvirus Humano 1/metabolismo , Inmunidad Innata , Interferones , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Uridina Difosfato
7.
Viruses ; 16(2)2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38400027

RESUMEN

Herpes simplex virus 1 (HSV-1) causes significant morbidity and death in humans worldwide. Herpes simplex virus 1 has a complex fusion mechanism that is incompletely understood. The HSV-1 strain ANG has notable fusion and entry activities that distinguish it from wild type. HSV-1 ANG virions fused with the Vero cell surface at 4 °C and also entered cells more efficiently at 15 °C, relative to wild type HSV-1 strain KOS virions, consistent with a hyperfusogenic phenotype. Understanding the molecular basis for the unique entry and fusion activities of HSV-1 strain ANG will help decipher the HSV fusion reaction and entry process. Sequencing of HSV-1 ANG genes revealed multiple changes in gB, gC, gD, gH, and gL proteins relative to wild type HSV-1 strains. The ANG UL45 gene sequence, which codes for a non-essential envelope protein, was identical to wild type KOS. HSV-1 ANG gB, gD, and gH/gL were necessary and sufficient to mediate cell-cell fusion in a virus-free reporter assay. ANG gB, when expressed with wild type KOS gD and gH/gL, increased membrane fusion, suggesting that ANG gB has hyperfusogenic cell-cell fusion activity. Replacing the KOS gD, gH, or gL with the corresponding ANG alleles did not enhance cell-cell fusion. The novel mutations in the ANG fusion and entry glycoproteins provide a platform for dissecting the cascade of interactions that culminate in HSV fusion and entry.


Asunto(s)
Herpesvirus Humano 1 , Humanos , Animales , Chlorocebus aethiops , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/metabolismo , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo , Fusión Celular , Glicoproteínas/genética , Glicoproteínas/metabolismo , Células Vero , Internalización del Virus , Fusión de Membrana
8.
Molecules ; 29(3)2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38338448

RESUMEN

Coleus forskohlii (Willd.) Briq. is a medicinal herb of the Lamiaceae family. It is native to India and widely present in the tropical and sub-tropical regions of Egypt, China, Ethiopia, and Pakistan. The roots of C. forskohlii are edible, rich with pharmaceutically bioactive compounds, and traditionally reported to treat a variety of diseases, including inflammation, respiratory disorders, obesity, and viral ailments. Notably, the emergence of viral diseases is expected to quickly spread; consequently, these data impose a need for various approaches to develop broad active therapeutics for utilization in the management of future viral infectious outbreaks. In this study, the naturally occurring labdane diterpenoid derivative, Forskolin, was obtained from Coleus forskohlii. Additionally, we evaluated the antiviral potential of Forskolin towards three viruses, namely the herpes simplex viruses 1 and 2 (HSV-1 and HSV-2), hepatitis A virus (HAV), and coxsackievirus B4 (COX-B4). We observed that Forskolin displayed antiviral activity against HAV, COX-B4, HSV-1, and HSV-2 with IC50 values of 62.9, 73.1, 99.0, and 106.0 µg/mL, respectively. Furthermore, we explored the Forskolin's potential antiviral target using PharmMapper, a pharmacophore-based virtual screening platform. Forskolin's modeled structure was analyzed to identify potential protein targets linked to its antiviral activity, with results ranked based on Fit scores. Cathepsin L (PDB ID: 3BC3) emerged as a top-scoring hit, prompting further exploration through molecular docking and MD simulations. Our analysis revealed that Forskolin's binding mode within Cathepsin L's active site, characterized by stable hydrogen bonding and hydrophobic interactions, mirrors that of a co-crystallized inhibitor. These findings, supported by consistent RMSD profiles and similar binding free energies, suggest Forskolin's potential in inhibiting Cathepsin L, highlighting its promise as an antiviral agent.


Asunto(s)
Herpesvirus Humano 1 , Colforsina/farmacología , Colforsina/química , Catepsina L , Simulación del Acoplamiento Molecular , Herpesvirus Humano 1/metabolismo , Antivirales/farmacología , Antivirales/química
9.
J Virol ; 98(3): e0139223, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38363111

RESUMEN

Although it is widely accepted that herpesviruses utilize host RNA polymerase II (RNAPII) to transcribe viral genes, the mechanism of utilization varies significantly among herpesviruses. With the exception of herpes simplex virus 1 (HSV-1) in alpha-herpesviruses, the mechanism by which RNAPII transcribes viral genes in the remaining alpha-herpesviruses has not been reported. In this study, we investigated the transcriptional mechanism of an avian alpha-herpesvirus, Anatid herpesvirus 1 (AnHV-1). We discovered for the first time that hexamethylene-bis-acetamide-inducing protein 1 (HEXIM1), a major inhibitor of positive elongation factor B (P-TEFb), was significantly upregulated during AnHV-1 infection, and its expression was dynamically regulated throughout the progression of the disease. However, the expression level of HEXIM1 remained stable before and after HSV-1 infection. Excessive HEXIM1 assists AnHV-1 in progeny virus production, gene expression, and RNA polymerase II recruitment by promoting the formation of more inactive P-TEFb and the loss of RNAPII S2 phosphorylation. Conversely, the expression of some host survival-related genes, such as SOX8, CDK1, MYC, and ID2, was suppressed by HEXIM1 overexpression. Further investigation revealed that the C-terminus of the AnHV-1 US1 gene is responsible for the upregulation of HEXIM1 by activating its promoter but not by interacting with P-TEFb, which is the mechanism adopted by its homologs, HSV-1 ICP22. Additionally, the virus proliferation deficiency caused by US1 deletion during the early infection stage could be partially rescued by HEXIM1 overexpression, suggesting that HEXIM1 is responsible for AnHV-1 gaining transcription advantages when competing with cells. Taken together, this study revealed a novel HEXIM1-dependent AnHV-1 transcription mechanism, which has not been previously reported in herpesvirus or even DNA virus studies.IMPORTANCEHexamethylene-bis-acetamide-inducing protein 1 (HEXIM1) has been identified as an inhibitor of positive transcriptional elongation factor b associated with cancer, AIDS, myocardial hypertrophy, and inflammation. Surprisingly, no previous reports have explored the role of HEXIM1 in herpesvirus transcription. This study reveals a mechanism distinct from the currently known herpesvirus utilization of RNA polymerase II, highlighting the dependence on high HEXIM1 expression, which may be a previously unrecognized facet of the host shutoff manifested by many DNA viruses. Moreover, this discovery expands the significance of HEXIM1 in pathogen infection. It raises intriguing questions about whether other herpesviruses employ similar mechanisms to manipulate HEXIM1 and if this molecular target can be exploited to limit productive replication. Thus, this discovery not only contributes to our understanding of herpesvirus infection regulation but also holds implications for broader research on other herpesviruses, even DNA viruses.


Asunto(s)
Anseriformes , Factor B de Elongación Transcripcional Positiva , Proteínas de Unión al ARN , Factores de Transcripción , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/metabolismo , Factor B de Elongación Transcripcional Positiva/genética , Factor B de Elongación Transcripcional Positiva/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Transcripción Viral , Animales
10.
PLoS Pathog ; 20(1): e1011936, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38227586

RESUMEN

Nuclear egress is an essential process in herpesvirus replication whereby nascent capsids translocate from the nucleus to the cytoplasm. This initial step of nuclear egress-budding at the inner nuclear membrane-is coordinated by the nuclear egress complex (NEC). Composed of the viral proteins UL31 and UL34, NEC deforms the membrane around the capsid as the latter buds into the perinuclear space. NEC oligomerization into a hexagonal membrane-bound lattice is essential for budding because NEC mutants designed to perturb lattice interfaces reduce its budding ability. Previously, we identified an NEC suppressor mutation capable of restoring budding to a mutant with a weakened hexagonal lattice. Using an established in-vitro budding assay and HSV-1 infected cell experiments, we show that the suppressor mutation can restore budding to a broad range of budding-deficient NEC mutants thereby acting as a universal suppressor. Cryogenic electron tomography of the suppressor NEC mutant lattice revealed a hexagonal lattice reminiscent of wild-type NEC lattice instead of an alternative lattice. Further investigation using x-ray crystallography showed that the suppressor mutation promoted the formation of new contacts between the NEC hexamers that, ostensibly, stabilized the hexagonal lattice. This stabilization strategy is powerful enough to override the otherwise deleterious effects of mutations that destabilize the NEC lattice by different mechanisms, resulting in a functional NEC hexagonal lattice and restoration of membrane budding.


Asunto(s)
Herpesviridae , Herpesvirus Humano 1 , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/metabolismo , Supresión Genética , Núcleo Celular/metabolismo , Membrana Nuclear/metabolismo , Herpesviridae/metabolismo , Liberación del Virus
11.
Sci Rep ; 14(1): 27, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167429

RESUMEN

Glioblastoma multiforme (GBM) is a highly aggressive primary brain tumor. Recent findings highlighted the significance of viral microRNAs (miRs) in regulating post-transcriptional mRNA expression in various human conditions. Although HSV1 encodes viral miRs and affects the central nervous system, no study investigated the roles of HSV1-encoding miRs in GBM development. This study applied in silico approaches to investigate whether HSV1-encoding miRs are involved in GBM development and, if so, how they regulate tumor-suppressive/oncogenes expression in GBM. This study leveraged bioinformatics approaches to identify the potential effect of HSV1 miRs in GBM development. The GSE158284, GSE153679, and GSE182109 datasets were analyzed to identify differentially expressed genes in GBM tissues and cell lines using the limma package in the R software. The GSE182109 dataset was analyzed to determine gene expression at the single-cell levels using the Seurat package in the R software. The TCGA-GTEX, GDSC, CTRP, immunogenetic, and enrichment analyses were performed to study the impact of identified viral HSV1 miRs targets in GBM development. hsv1-miR-H6-3p is upregulated in GBM and can be responsible for EPB41L1 and SH3PXD2A downregulation in GBM tissues. Also, hsv1-miR-H1-5p is upregulated in GBM and can decrease the expression of MELK, FZD2, NOVA1, TMEM97, PTPRZ1, and PDGFC in GBM development. The single-cell RNA sequencing analyses have demonstrated that MELK, FZD2, NOVA1, TMEM97, PTPRZ1, and PDGFC are expressed in astrocytes residing in the GBM microenvironment. This study provides novel insights into the potential roles of HSV1 miRs in GBM pathogenesis and offers a reference for further studies on the significance of HSV1 miRs in GBM development.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Herpesvirus Humano 1 , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Glioblastoma/patología , Neoplasias Encefálicas/patología , Línea Celular , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/metabolismo , Proteínas de Unión al ARN/metabolismo , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Proliferación Celular , Microambiente Tumoral , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/metabolismo
12.
J Am Chem Soc ; 146(4): 2615-2623, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38117537

RESUMEN

Herpes simplex virus-1 (HSV-1) utilizes multiple viral surface glycoproteins to trigger virus entry and fusion. Among these glycoproteins, glycoprotein D (gD) functions as a receptor-binding protein, which makes it an attractive target for the development of vaccines against HSV-1 infection. Several recombinant gD subunit vaccines have been investigated in both preclinical and clinical phases with varying degrees of success. It is fundamentally critical to explore the functions of gD glycans. In light of this, we report an efficient synthetic platform to construct glycosylated gDs bearing homogeneous glycans at N94 and N121. The oligosaccharides were prepared by enzymatic synthesis and conjugated to peptidyl sectors. The glycoproteins were constructed via a combination of 7-(piperazin-1-yl)-2-(methyl)quinolinyl (PPZQ)-assisted expressed protein ligation and ß-mercapto amino acid-assisted-desulfurization strategies. Biological studies showed that synthetic gDs exhibited potent in vivo activity in mice.


Asunto(s)
Infecciones por Herpesviridae , Herpesvirus Humano 1 , Animales , Ratones , Herpesvirus Humano 1/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Glicoproteínas/metabolismo , Polisacáridos/metabolismo
13.
PLoS Pathog ; 19(12): e1011832, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38039340

RESUMEN

After entry into cells, herpes simplex virus (HSV) nucleocapsids dock at nuclear pore complexes (NPCs) through which viral genomes are released into the nucleoplasm where viral gene expression, genome replication, and early steps in virion assembly take place. After their assembly, nucleocapsids are translocated to the cytoplasm for final virion maturation. Nascent cytoplasmic nucleocapsids are prevented from binding to NPCs and delivering their genomes to the nucleus from which they emerged, but how this is accomplished is not understood. Here we report that HSV pUL16 and pUL21 deletion mutants accumulate empty capsids at the cytoplasmic face of NPCs late in infection. Additionally, prior expression of pUL16 and pUL21 prevented incoming nucleocapsids from docking at NPCs, delivering their genomes to the nucleus and initiating viral gene expression. Both pUL16 and pUL21 localized to the nuclear envelope, placing them in an appropriate location to interfere with nucleocapsid/NPC interactions.


Asunto(s)
Herpes Simple , Herpesvirus Humano 1 , Humanos , Cápside/metabolismo , Poro Nuclear/metabolismo , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo , Nucleocápside/metabolismo
14.
Viruses ; 15(10)2023 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-37896835

RESUMEN

Herpesviruses are enveloped and have an amorphous protein layer surrounding the capsid, which is termed the tegument. Tegument proteins perform critical functions throughout the viral life cycle. This review provides a comprehensive and comparative analysis of the roles of specific tegument proteins in capsid transport and virion morphogenesis of selected, well-studied prototypes of each of the three subfamilies of Herpesviridae i.e., human herpesvirus-1/herpes simplex virus-1 (Alphaherpesvirinae), human herpesvirus-5/cytomegalovirus (Betaherpesvirinae) and human herpesvirus -8/Kaposi's sarcomavirus (Gammaherpesvirinae). Most of the current knowledge is based on alpha herpesviruses, in particular HSV-1. While some tegument proteins are released into the cytoplasm after virus entry, several tegument proteins remain associated with the capsid and are responsible for transport to and docking at the nucleus. After replication and capsid formation, the capsid is enveloped at the nuclear membrane, which is referred to as primary envelopment, followed by de-envelopment and release into the cytoplasm. This requires involvement of at least three tegument proteins. Subsequently, multiple interactions between tegument proteins and capsid proteins, other tegument proteins and glycoproteins are required for assembly of the virus particles and envelopment at the Golgi, with certain tegument proteins acting as the central hub for these interactions. Some redundancy in these interactions ensures appropriate morphogenesis.


Asunto(s)
Herpesviridae , Herpesvirus Humano 1 , Herpesvirus Humano 8 , Humanos , Proteínas de la Cápside/metabolismo , Cápside/metabolismo , Ensamble de Virus , Herpesviridae/metabolismo , Herpesvirus Humano 1/metabolismo , Herpesvirus Humano 8/metabolismo , Morfogénesis , Virión/metabolismo , Proteínas Estructurales Virales/metabolismo
15.
PLoS One ; 18(10): e0286231, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37862369

RESUMEN

Oncolytic viruses (OVs) have emerged as a novel cancer treatment modality, which selectively target and kill cancer cells while sparing normal ones. Among them, engineered Herpes simplex virus type 1 (HSV-1) has been proposed as a potential treatment for cancer and was moved to phase III clinical trials. Previous studies showed that design of OV therapy combined with p53 gene therapy increases the anti-cancer activities of OVs. Here, the UL39 gene of the ICP34.5 deleted HSV-1 was manipulated with the insertion of the EGFP-p53 expression cassette utilizing CRISPR/ Cas9 editing approach to enhance oncoselectivity and oncotoxicity capabilities. The ΔUL39/Δγ34.5/HSV1-p53 mutant was isolated using the chorioallantoic membrane (CAM) of fertilized chicken eggs as a complementing membrane to support the growth of the viruses with gene deficiencies. Comparing phenotypic features of ΔUL39/Δγ34.5/HSV1-p53-infected cells with the parent Δγ34.5/HSV-1 in vitro revealed that HSV-1-P53 had cytolytic ability in various cell lines from different origin with different p53 expression rates. Altogether, data presented here illustrate the feasibility of exploiting CAM model as a promising strategy for isolating recombinant viruses such as CRISPR/Cas9 mediated HSV-1-P53 mutant with less virus replication in cell lines due to increased cell mortality induced by exogenous p53.


Asunto(s)
Herpesvirus Humano 1 , Neoplasias , Virus Oncolíticos , Animales , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/metabolismo , Sistemas CRISPR-Cas , Pollos/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Membrana Corioalantoides/metabolismo , Neoplasias/genética , Neoplasias/terapia , Virus Oncolíticos/genética
16.
Angew Chem Int Ed Engl ; 62(41): e202309838, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-37555536

RESUMEN

Herpes simplex virus (HSV-1) employs heparan sulfate (HS) as receptor for cell attachment and entry. During late-stage infection, the virus induces the upregulation of human heparanase (Hpse) to remove cell surface HS allowing viral spread. We hypothesized that inhibition of Hpse will prevent viral release thereby representing a new therapeutic strategy for HSV-1. A range of HS-oligosaccharides was prepared to examine the importance of chain length and 2-O-sulfation of iduronic moieties for Hpse inhibition. It was found that hexa- and octasaccharides potently inhibited the enzyme and that 2-O-sulfation of iduronic acid is tolerated. Computational studies provided a rationale for the observed structure-activity relationship. Treatment of human corneal epithelial cells (HCEs) infected with HSV-1 with the hexa- and octasaccharide blocked viral induced shedding of HS which significantly reduced spread of virions. The compounds also inhibited migration and proliferation of immortalized HCEs thereby providing additional therapeutic properties.


Asunto(s)
Glucuronidasa , Herpes Simple , Herpesvirus Humano 1 , Humanos , Glucuronidasa/antagonistas & inhibidores , Glucuronidasa/metabolismo , Heparitina Sulfato/farmacología , Herpes Simple/enzimología , Herpes Simple/virología , Herpesvirus Humano 1/metabolismo , Oligosacáridos/farmacología , Oligosacáridos/metabolismo
17.
Biochim Biophys Acta Biomembr ; 1865(8): 184200, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37517559

RESUMEN

Herpes simplex virus 1 (HSV-1) is a well-studied herpesvirus that causes various human diseases. Like other herpesviruses, HSV-1 produces the transmembrane glycoprotein N (gN/UL49.5 protein), which has been extensively studied, but its function in HSV-1 remains largely unknown. The amino-acid sequences and lengths of UL49.5 proteins differ between herpesvirus species. It is, therefore, crucial to determine whether and to what extent the spatial structure of UL49.5 orthologs that are transporter associated with antigen processing (TAP) inhibitors (i.e., of bovine herpesvirus 1; BoHV-1) differ from that of non-TAP inhibitors (i.e., of HSV-1). Our study aimed to examine the 3D structure of the HSV-1-encoded UL49.5 protein in an advanced model of the endoplasmic reticulum (ER) membrane using circular dichroism, 2D nuclear magnetic resonance, and multiple-microsecond all-atom molecular dynamics simulations in an ER membrane mimetic environment. According to our findings, the N-terminus of the HSV-1-encoded UL49.5 adopts a highly flexible, unordered structure in the extracellular part due to the presence of a large number of proline and glycine residues. In contrast to the BoHV-1-encoded homolog, the transmembrane region of the HSV-1-encoded UL49.5 is formed by a single long transmembrane α-helix, rather than two helices oriented perpendicularly, while the cytoplasmic part of the protein (C-terminus) has a short unordered structure. Our findings provide valuable experimental structural information on the HSV-1-encoded UL49.5 protein and offer, based on the obtained structure, insight into its lack of biological activity in inhibiting the TAP-dependent antigen presentation pathway.


Asunto(s)
Herpes Simple , Herpesviridae , Herpesvirus Humano 1 , Humanos , Presentación de Antígeno , Herpesvirus Humano 1/metabolismo , Proteínas del Envoltorio Viral/química , Proteínas de Transporte de Membrana/metabolismo , Herpesviridae/metabolismo
18.
J Neurovirol ; 29(4): 400-415, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37436577

RESUMEN

Alzheimer's disease (AD) manifests with loss of neurons correlated with intercellular deposition of amyloid (amyloid plaques) and intracellular neurofibrillary tangles of hyperphosphorylated tau. However, targeting AD hallmarks has not as yet led to development of an effective treatment despite numerous clinical trials. A better understanding of the early stages of neurodegeneration may lead to development of more effective treatments. One underexplored area is the clinical correlation between infection with herpesviruses and increased risk of AD. We hypothesized that similar to work performed with herpes simplex virus 1 (HSV1), infection with the cytomegalovirus (CMV) herpesvirus increases levels and phosphorylation of tau, similar to AD tauopathy. We used murine CMV (MCMV) to infect mouse fibroblasts and rat neuronal cells to test our hypothesis. MCMV infection increased steady-state levels of primarily high molecular weight forms of tau and altered the patterns of tau phosphorylation. Both changes required viral late gene products. Glycogen synthase kinase 3 beta (GSK3ß) was upregulated in the HSVI model, but inhibition with lithium chloride suggested that this enzyme is unlikely to be involved in MCMV infection mediated tau phosphorylation. Thus, we confirm that MCMV, a beta herpes virus, like alpha herpes viruses (e.g., HSV1), can promote tau pathology. This suggests that CMV infection can be useful as another model system to study mechanisms leading to neurodegeneration. Since MCMV infects both mice and rats as permissive hosts, our findings from tissue culture can likely be applied to a variety of AD models to study development of abnormal tau pathology.


Asunto(s)
Enfermedad de Alzheimer , Infecciones por Citomegalovirus , Herpesvirus Humano 1 , Ratas , Ratones , Animales , Enfermedad de Alzheimer/patología , Proteínas tau/genética , Proteínas tau/metabolismo , Neuronas/patología , Fosforilación , Herpesvirus Humano 1/metabolismo , Infecciones por Citomegalovirus/complicaciones , Infecciones por Citomegalovirus/genética , Infecciones por Citomegalovirus/patología , Glucógeno Sintasa Quinasa 3 beta/genética , Glucógeno Sintasa Quinasa 3 beta/farmacología
19.
Cell Mol Life Sci ; 80(6): 172, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37261502

RESUMEN

Extensive research provides evidence that neuroinflammation underlies numerous brain disorders. However, the molecular mechanisms by which inflammatory mediators determine synaptic and cognitive dysfunction occurring in neurodegenerative diseases (e.g., Alzheimer's disease) are far from being fully understood. Here we investigated the role of interleukin 1ß (IL-1ß), and the molecular cascade downstream the activation of its receptor, to the synaptic dysfunction occurring in the mouse model of multiple Herpes simplex virus type-1 (HSV-1) reactivations within the brain. These mice are characterized by neuroinflammation and memory deficits associated with a progressive accumulation of neurodegenerative hallmarks (e.g., amyloid-ß protein and tau hyperphosphorylation). Here we show that mice undergone two HSV-1 reactivations in the brain exhibited increased levels of IL-1ß along with significant alterations of: (1) cognitive performances; (2) hippocampal long-term potentiation; (3) expression synaptic-related genes and pre- and post-synaptic proteins; (4) dendritic spine density and morphology. These effects correlated with activation of the epigenetic repressor MeCP2 that, in association with HDAC4, affected the expression of synaptic plasticity-related genes. Specifically, in response to HSV-1 infection, HDAC4 accumulated in the nucleus and promoted MeCP2 SUMOylation that is a post-translational modification critically affecting the repressive activity of MeCP2. The blockade of IL-1 receptors by the specific antagonist Anakinra prevented the MeCP2 increase and the consequent downregulation of gene expression along with rescuing structural and functional indices of neurodegeneration. Collectively, our findings provide novel mechanistic evidence on the role played by HSV-1-activated IL-1ß signaling pathways in synaptic deficits leading to cognitive impairment.


Asunto(s)
Enfermedad de Alzheimer , Herpes Simple , Herpesvirus Humano 1 , Ratones , Animales , Herpesvirus Humano 1/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Enfermedades Neuroinflamatorias , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Herpes Simple/complicaciones , Trastornos de la Memoria/genética , Plasticidad Neuronal/fisiología , Epigénesis Genética , Hipocampo/metabolismo , Modelos Animales de Enfermedad , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/metabolismo
20.
PLoS Pathog ; 19(6): e1010966, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37343008

RESUMEN

Herpes simplex virus 1 (HSV1) expresses its genes in a classical cascade culminating in the production of large amounts of structural proteins to facilitate virus assembly. HSV1 lacking the virus protein VP22 (Δ22) exhibits late translational shutoff, a phenotype that has been attributed to the unrestrained activity of the virion host shutoff (vhs) protein, a virus-encoded endoribonuclease which induces mRNA degradation during infection. We have previously shown that vhs is also involved in regulating the nuclear-cytoplasmic compartmentalisation of the virus transcriptome, and in the absence of VP22 a number of virus transcripts are sequestered in the nucleus late in infection. Here we show that despite expressing minimal amounts of structural proteins and failing to plaque on human fibroblasts, the strain 17 Δ22 virus replicates and spreads as efficiently as Wt virus, but without causing cytopathic effect (CPE). Nonetheless, CPE-causing virus spontaneously appeared on Δ22-infected human fibroblasts, and four viruses isolated in this way had all acquired point mutations in vhs which rescued late protein translation. However, unlike a virus deleted for vhs, these viruses still induced the degradation of both cellular and viral mRNA suggesting that vhs mutation in the absence of VP22 is necessary to overcome a more complex disturbance in mRNA metabolism than mRNA degradation alone. The ultimate outcome of secondary mutations in vhs is therefore the rescue of virus-induced CPE caused by late protein synthesis, and while there is a clear selective pressure on HSV1 to mutate vhs for optimal production of late structural proteins, the purpose of this is over and above that of virus production.


Asunto(s)
Herpes Simple , Herpesvirus Humano 1 , Humanos , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/metabolismo , Transcriptoma , Ribonucleasas/metabolismo , Virión/metabolismo , ARN Mensajero/genética , Herpes Simple/genética , Herpes Simple/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA